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A model of electron propagation in Zwanziger’s formulation of 
quantum electrodynamics 
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B-1050 Brussels, Belgium 

Received 26 April 1989 

Abstract. We report a study of the infrared properties of the electron propagator in a 
framework which uses a gauge-invariant electromagnetic potential. The quantisation of 
the electromagnetic potential is performed in the Zwanziger formulation of quantum 
electrodynamics to avoid the usual infrared divergences. The Kallen-Lehmann representa- 
tion of the infrared electron propagator in the photon vacuum is shown to be well defined 
and convergent in this framework. Furthermore, we show that the probability density of 
an electron wavepacket propagating in the vacuum decreases like (time)-3, a well known 
property which is recovered here in quantum electrodynamics. 

1. Introduction 

The propagation of an electron in the vacuum is a difficult problem in quantum 
electrodynamics (QED) because of the coupling with the infrared virtual photons. As 
a consequence, the singularity of the electron propagator near the mass shell in 
momentum space is converted from a pole into a branch point when the electromagnetic 
coupling is switched on. This branch point singularity has appeared in several calcula- 
tions of the infrared electron propagator since the early works in QED and it constitutes 
a fundamental difficulty. In particular, let us mention two problems. 

( I )  The propagator in momentum space calculated in the standard Gupta-Bleuler 
framework does not admit a well defined Kallen-Lehmann representation (Zwanziger 
1975), albeit that such a representation is important for the definition of the incoming 
and outgoing scattering states. 

(11) In non-relativistic quantum mechanics, the amplitude of a wavepacket describ- 
ing the propagation of a free stable particle decreases like the inverse $ power of the 
time. Accordingly, the probability density obeys the inverse-cube-law falloff property, 
which is shared with classical mechanics. However in QED, this fundamental property 
is not obeyed if the propagator has a branch point singularity near the mass shell. The 
pole singularity is the unique momentum space singularity which would permit the 
recovery of the inverse-cube-law falloff property in QED (Stapp 1983). 

The purpose of the present paper is to show that it is possible to solve both problems 
in the light of recent works on the construction of charged states in QED (Morchio 
and Strocchi 1983, D’Emilio and Mintchev 1983, 1984). In these works, the charged 
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states are obtained as generalised coherent states which obey the Gauss law. This 
fundamental condition was not satisfied in the standard Gupta-Bleuler framework, 
which is probably at the origin of the two aforementioned problems. In order to be 
able to calculate non-perturbatively the electron propagator, we shall use the Zwanziger 
formulation of QED. That author showed that the introduction of Hertz potentials 
avoids the infrared divergences, which makes this formulation particularly useful 
(Zwanziger 1979). 

Our general assumptions for the construction of the charged states are presented 
in 0 2 with some reference to the Zwanziger formulation of QED. Our model of electron 
propagation is introduced in § 3. The electron propagator in the photon vacuum is 
calculated in § 4. The propagator in momentum space and the Kallen-Lehmann 
representation are derived in 0 5 .  The wavepacket propagation is discussed in B 6. 

2. General assumptions 

With the purpose of calculating non-perturbatively the electron propagator, we need 
the equation of motion for the quantised fermion field coupled with the quantised 
electromagnetic field 

(iy-a-m).\ZI=qy”’oP,\Ir. (2.1) 

To avoid the difficulties of the standard Gupta-Bleuler framework that we mentioned 
in the introduction, the electromagnetic potential is chosen as the following distribution- 
valued operator: 

(2.2) 5 ax, 

A,, (x )  is the electromagnetic potential operator of the standard Gupta-Bleuler 
framework. J ” ( y )  is a real distribution which obeys 

a 
&,( X)  = A, (x )  - d4y- J”(y)A,,(  x - y ) .  

a .  ~ ( y )  = s4(y). (2.3) 
This condition implies that d , ( x )  and Y(x)  are invariant under a gauge transformation 
like 

A,(x)+ A,,(x) -d ,A(x)  (2.4) 
where A(x) is a real function vanishing at infinity. Consequently, the charged states 
constructed in this framework obey the Gauss law (cf Morchio and Strocchi 1983, 
D’Emilio and Mintchev 1984). 

One possible solution of (2.3) which will fulfil our needs in the present paper is 

u,S4(y - UT)  dT up64(y - UT) d7. (2.5) 

This real distribution depends on five real parameters: the 4-vector U, and the scalar 
c. Consequently, the charged field operator T, solution of (2.1), will also depend on 
these parameters. An inertial frame of reference is thus privileged once U, is introduced 
in the construction of a quantum charged state as discussed by Frohlich et a1 (1979a, b). 

In the following section, we are concerned with the behaviour of the fields at large 
distances. Asymptotically, the electromagnetic potential is the sum of an operator-like 
part which is a quantised free potential plus the classical Coulomb potential produced 
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by the mean electron current. In the present paper, we treat the case of a single 
electron. Accordingly, we assume that the electron field does not interact with its own 
Coulomb potential, an assumption which has already been made by several authors 
(Kulish and Faddeev 1970, Zwanziger 1975, Papanicolaou 1976). The electromagnetic 
potential appearing in (2.1) is thus the quantised free electromagnetic potential. 

To avoid the infrared divergences, the Gupta-Bleuler electromagnetic potential 
A,(x) is quantised in the Zwanziger formulation of QED where the inner product 
defining the photon state space has the form 

The parameter a ,  appears in the Wightman function of the Hertz potentials from 
which the vector potential A, is derived. Such a parameter breaks the scale invariance 
of the electromagnetic system as shown by Zwanziger (1979). p(  5) is the zero-frequency 
limit of the wavefunction 4, ( k )  defined by 

We use the notation k, = wk*, with Lo= 1 and d 2 i  for the infinitesimal element of 
spherical angle. The function K is defined by 

(2.11) 

On the class of wavefunctions { c p p ( k ) }  which are regular at w =0,  the first term in 
(2.6) is equal to the standard inner product and the second term vanishes. The 
Zwanziger inner product remains finite on the class of wavefunctions { c p p ( k ) }  with a 
l/o singularity at w = 0. Apart from this choice of inner product, we define the photon 
Fock space as in the standard Gupta-Bleuler framework. 

3. The propagation model 

The purpose of our model is to describe the asymptotic propagation of one electron 
coupled with the quantised electromagnetic field. We assume that no other charge is 
present. We define the asymptotic Green operator of Feynman type which rules the 
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propagation of the asymptotic charged states by 

- e(Yo-xo)%; P, s)'%(x; P, s) i .  (3.1) 
The operator acts on the direct product of the one-fermion state space with the photon 
state space. DU and Y" are spinors of the one-fermion state space but operators over 
the photon state space. The indices a and b label the components of the 4-spinors. 
In @ and v, the adjoint operation was carried out on the spinor and the operator 
parts of OU and Y". The positive-energy solution is propagated from past to future and 
the reverse for the negative-energy solution with a minus sign taking account of the 
fermion character of the electron. 

021 and '7" describe an incoming electron or positron of given 4-momentum p and 
spin s. They are the asymptotic solutions of the Dirac equation (2.1) where d , ( x )  is 
now the incoming quantised electromagnetic potential defined by (2.2) with A, replaced 
by AL.  Assuming that the momentum of the electron does not change very much in 
the propagation, these asymptotic solutions can be calculated with the eikonal approxi- 
mation. Furthermore, we assume that the spacetime point x is close to the classical 
trajectory x =PT. Consequently, the spinors 021 and Y" have the forms 

%(x; p ,  s) =- U ( P ,  s)@ W(P. x/m2) (3.2) (2.rr)3/2 

(3.3) 

The operator W is a spacetime-dependent operator acting on the photon Fock space 
and it is given by 

p . x / m '  

~ ( p .  x/m') = T exp( -iq J p*d:(p~) dT). (3.4) 
--3c 

u ( p ,  s) and v ( p ,  s) are the positive- and negative-energy solutions of the free Dirac 
equation in standard spinor notation with the normalisation of Zwanziger (1975). 

For an outgoing configuration, a similar formula holds with d'" replaced by JP"' 
and -cc by CO. 

The time-ordered product can be eliminated and (3.4) becomes 

~ ( p * x / m * ) = e x p ( - i e , ) x  ~ ( p e x l m ' )  (3.5) 
where 

U(p .x /m ' )=exp  -iq d4ycp(y;x).Ai"(y) . ( J  ) (3.6) 

The factor exp(-ie,) is an infinite phase due to the integration of the retarded photon 
propagator. This phase is omnipresent but may be considered as a constant independent 
of x. Deriving unitary operator U from (3.4), we introduced the coherent factor 
cp'l(y; x). Its Fourier transform is given by 

eik"cp,(y; x )  d4y 

l + c  U, -- -1 i k - p p - x  p, 1 - c  -~ - 
(2.ir i3~2exp( m' ) (k .p- iO 2 k .u+iO 2 k.u-iO 

(3.7) 
where we used the definition (2.5) of J,(x). 
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The normal form of the unitary operator U is 

(3.8) 

where the free electromagnetic potential A'" was separated into its positive- and 
negative-frequency parts, A'+' and A'-'. N ( x ,  x )  is defined as the limit x - y  of the 
commutator 

N ( x , y )  = d4z d4z'[cp(z; X )  * A"(z), ~ ( z ' ;  y )  * A'+'(z')] 

(3.9) 

where the spaces in cp( ; x )  mean that each corresponding variable of cp is integrated 
in A'"[cp] contrary to the other variable of cp. The expression (3.9) is calculated with 
the Zwanziger inner product (2.6). The integral over w in the first term of (2.6) is 
made convergent in the ultraviolet by replacing ip * ( x  - y )  by E + ip - ( x  - y )  (Zwanziger 
1975). The result is 

I 
=(A'%( ; x ) l R ,  A ' " M  ; y ) I W  

E + ip . ( x  - y ) 
maZ e-? ] (1 - *  coth *) 

where 4 is defined by 

(3.10) 

(3.11) 

and y is the Euler constant. We note that N ( x ,  y )  is independent of the parameter c. 
The unitary operator U maps the photon Fock space on another state space 

orthogonal to the Fock space. Indeed, if @'ph and 

(@Lh,  U @ p h ) = O  (3.12) 

are two photon Fock states, 

in the limit E + 0, because we have the inequality 

II, coth $-  1 3 0 .  (3.13) 

This property is well known in the formulation using the standard inner product (Kulish 
and Faddeev 1970). The preceding calculation shows that it also holds in the Zwanziger 
formulation where the infrared divergences are regularised. The normal form (3.8) 
and the commutator (3.9) are used in the following section. 

4. Electron propagation in the vacuum 

The Green operator (3.1) describes an electron or a positron propagating in spacetime 
either remaining in the photon vacuum or with emission or absorption of light. The 
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amplitudes of all these processes are contained in (3.1). Hereafter, we shall focus on 
the amplitude for the charged particle to propagate in the vacuum from the origin to 
x, given by 

where R is the vacuum of the photon Fock space. From the expression (3.4) for W 
and using the normal form (3.8) for U, we obtain 

(a, W ( p  x / d  w + ( o ) a )  

= ( E + ; . x) P (  p'' ' 
with the definition 

(4.2) 

2 a  
P (  P, U )  = P ( + )  = - (+ coth CL - 1) (4.3) 

7T 

where + is the hyperbolic angle between U and p defined by (3.11). As expected from 
the unitarity of W, the expression (4.2) tends to 1 and x goes to zero. Similar expressions 
hold if xo < 0. 

The Green function can then be written as 

This expression is independent of the parameter c, but depends on the 4-vector U,+. 

5. The propagator in momentum space 

Using the integral representation 

1 
-L{om rP- 'exp[-(E+iA)r] d r  

( E  + iA)O - r ( p )  
we obtain the asymptotic Green function in momentum space 

G"'(p) = d4x eip"Gas(x) I 
where 

This equality arises because p depends only on the hyperbolic angle between the two 
4-vectors p and U and not on their length (see (3.11) and (4.3)). This remarkable 
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property enables us to integrate easily. By the change of variable M = m( 1 + r ) ,  the 
Kallen-Lehmann representation of the electron propagator is finally obtained 

1 -pc p,u 1 i E P P.14 ) 

G a 5 ( p ) =  
W ( P ,  U 1 1  

M - m  y * p + M  
x exp [ - E  (m)l p 2 -  M2+iO‘ (5.4) 

Several comments are now in order. In the standard Gupta-Bleuler formalism with 
J ,  = 0, the non-perturbative calculation of the Green function (Zwanziger 1975) led 
to a similar expression but with an exponent - a / r  instead of p. With such a negative 
exponent, the integral over M diverges at M = m and the Kallen-Lehmann representa- 
tion is not defined. Thanks to the positive sign of p (see {3.13)), the integral (5.4) 
converges and the representation exists. The positivity of p in the present framework 
has its origin in the transversality 

k+@,  = O  (5.5) 

of the coherent factor (3.7). The property ( 5 . 5 )  also implies the Gauss law, which 
holds in the present framework based on the gauge-invariant electromagnetic potential 
( 2 . 2 )  (Morchio and Strocchi 1983, D’Emilio and Mintchev 1983, 1984). We may 
conclude here that the charged states must satisfy the Gauss law if we want the 
propagator to have a well defined Kallen-Lehmann representation. 

The integral over M in (5.4) is performed as follows. In the limit where E goes to 
zero, the exponential disappears from the integral. This latter can then be transformed 
into a contour integral in the complex plane of the variable M .  The singularity on the 
mass shell is thus 

(5.6) 

We now observe that p ( p ,  U )  goes to zero when the momentum p goes to U, and the 
usual free propagator is recovered 

The infinitesimal parameter E is also eliminated in this limit so that the transition 
amplitude does not vanish when U = p .  

However, the physical meaning of the limit U = p  is not clearly apparent at this 
level. In the following section, we shall provide the full justification of a similar limit 
in the propagation where the initial and the final electron states are completely specified. 

6. Wavepacket propagation 

Here we consider the propagation of the electron wavepacket in the photon vacuum. 
We assume that the positron processes are negligible. 

Our aim is to calculate the transition amplitude between states CLl(x) and i + b 2 ( x - X )  
where X = (t,  t u )  is a 4-vector. The 3-vector U is fixed but t is a variable parameter 
taking values between 0 and CO. CLl(x) and CL2(x) are 4-spinors localised near the 
spacetime origin x = 0. i+b,(x) describes a preparing device. 4b2(x - X )  represents a 
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detector movable in space along the axis U and detecting events delayed by a tunable 
time t .  Such an experiment will select electrons with a mean velocity U. Because the 
electron is a stable particle the transition amplitude is expected to decrease like tC3” 
when the detector is separated from the preparing device (Stapp 1983). We now turn 
to the proof of this property. 

The transition amplitude of the described process is defined by 

(6.1) 

using the Green function (4.4). We first integrate over po  in (4.4). Using the integral 
representation (5.1) and after integration over x, and x2, the amplitude becomes 

where 4, and 
We are interested in the asymptotic behaviour of this amplitude as the time t goes 

to CO. We use the method of stationary phase to integrate over the 3-momentum p in 
this limit (Bleistein and Handelsman 1986). t appears in an oscillatory kernel exp(-it4) 
with %phase 4 ( p ) = ( l + r ) [ ( m 2 + p ’ ) ” ’ - u . p ] .  The stationary point is p =  
mu] J1- U’ = P. It is convenient to introduce the corresponding energy Po = m/ J3. 

Thereafter, the integral over r is performed with the same method. The stationary 
point is now r = 0 .  

After both integrations, we obtain the asymptotic behaviour of the transition 
amplitude for t + c c  

are the Fourier transforms of the corresponding 4-spinors. 

whereupon the transition probability of the described process decreases with time t like 
& 2 0  I P, U 1 

t3+2pl P,u 1 ‘ (6.4) 

The 4-momentum P is fixed by the relative position of the measuring devices 1 
and 2. The 4-vector U was introduced in the construction of the charged quantum 
state in (2.5). But it remained arbitrary for the Kallen-Lehmann representation (5.4) 
to be well defined. E is the ultraviolet cutoff of the calculation. It is an infinitesimal 
quantity so that the transition probability (6.4) would be vanishing if PC P, U )  were not 
zero. This observation leads us to conclude that we have to choose U = P, because 
p(  P, U )  is zero in this limit (see (3.1 1) and (4.3)). Under this condition, the fundamental 
inverse-cube-law falloff property is recovered in quantum electrodynamics. 

Let us recall that the transition probability (6.4) concerns the propagation of the 
electron in the photon vacuum. When U Z P, the propagation from device 1 to detector 
2 is evanescent in the photon vacuum because of E. But had we assumed that the 
electron is accompanied by a quasiclassical electromagnetic radiation field, we would 
have obtained a non-vanishing probability for some U # P. In order to obtain the 
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transition probability of this more complicated process, we should consider the matrix 
elements of the Green operator (3.1) between photon coherent states, rather than 
between photon Fock states as in (4.1 1. 

7. Conclusions 

In the present paper, we calculated the infrared electron Green function in a simple 
model of electron propagation. We used the Zwanziger formulation of QED, which 
avoids the infrared divergences. It is then possible to recover two fundamental proper- 
ties of the electron propagation, with the help of the gauge-invariant electromagnetic 
potential defined by* ( 2 . 2 )  and (2.3). 

( I )  The Kallen-Lehmann representation of the infrared Green function exists. This 
result holds because the charged states satisfy the Gauss law in the present framework. 

(11 )  The inverse-cube-law falloff of the probability density is recovered under 
specific conditions. 

The invariant electromagnetic potential we defined in § 2 depends on a 4-vector U ,  

and on a scalar c. The property ( I )  holds for arbitrary values of these parameters. 
The parameter c remains arbitrary throughout the discussion of 5 s  4-6 because it does 
not appear in the physical quantities. On the other hand, the 4-vector U ,  does appear 
in physical observables such as transition probabilities. In the discussion of property 
( I I ) ,  we had to specify the initial and the final electron and photon states. At this 
stage we showed that the 4-vector U, may not remain arbitrary but has to be fixed by 
the configuration of the measuring devices in the experiment we want to describe. 
This important result shows that the charged states strongly depend on the measurement 
process in QED. One of the purposes of the present paper was to clarify this relationship 
in some simple example. Already in the early works on infrared problems in QED, the 
cross sections were shown to depend on a parameter A E  characterising the non-zero 
energy resolution of the detector. The present formalism is now able to deal consistently 
with electron wavefunction as shown in § 6. I t  thus allows a characterisation of the 
measurement device by more detailed quantities than only a simple parameter like AE. 

This conclusion is obtained in the present paper for a simplified model of electron 
propagation. Nevertheless, we believe that this conclusion would remain valid in other 
models of electron propagation sophisticated enough to incorporate the radiative 
corrections, because our conclusion is founded on the general assumptions of § 1. 
Similar results hold for the propagation of several charged particles as we shall show 
in a forthcoming publication. 
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